Всего: 6 1–6
Добавить в вариант
На стороне AB параллелограмма ABCD отмечена точка O так, что К плоскости ABCD из точки O восстановлен перпендикуляр SO длиной 8. Найдите значение выражения
где
— линейный угол двугранного угла BSCD, если
и известно, что площадь ABCD равна 45.
Объем правильной треугольной пирамиды SABC равен 13. Через сторону основания ВС проведено сечение, делящее пополам двугранный угол SBCA и пересекающее боковое ребро SA в точке М. Объем пирамиды МАВС равен 6. Найдите значение выражения где
— угол между плоскостью основания и плоскостью боковой грани пирамиды SABC.
В параллелограмме длина одной из сторон вдвое больше длины другой, а острый угол равен 60°. Большая сторона параллелограмма лежит в плоскости α, а его большая диагональ образует с этой плоскостью угол, синус которого равен Найдите значение выражения
где β — угол между плоскостью параллелограмма и плоскостью α.
Прямая a пересекает плоскость α в точке A и образует с этой плоскостью угол 30°. Точка B лежит на прямой a, причем Найдите длину проекции отрезка AB на плоскость α.
Основанием четырехугольной пирамиды является ромб, у которого косинус угла равен и длина стороны равна 8. Все боковые грани пирамиды наклонены к плоскости ее основания под углом α, а высота пирамиды равна 18. Найдите значение выражения
Угол BSC правильной треугольной пирамиды SABC равен Найдите значение выражения
где
— угол
— линейный