Поиск
?


Скопировать ссылку на результаты поиска



Всего: 6    1–6

Добавить в вариант

На сто­ро­не AB па­рал­ле­ло­грам­ма ABCD от­ме­че­на точка O так, что AB=3AO. К плос­ко­сти ABCD из точки O вос­ста­нов­лен пер­пен­ди­ку­ляр SO дли­ной 8. Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 89 конец ар­гу­мен­та ко­си­нус альфа , где  альфа   — ли­ней­ный угол дву­гран­но­го угла BSCD, если CD = 9,BC = 5 и из­вест­но, что пло­щадь ABCD равна 45.


Аналоги к заданию № 1153: 1183 1213 Все


Объем пра­виль­ной тре­уголь­ной пи­ра­ми­ды SABC равен 13. Через сто­ро­ну ос­но­ва­ния ВС про­ве­де­но се­че­ние, де­ля­щее по­по­лам дву­гран­ный угол SBCA и пе­ре­се­ка­ю­щее бо­ко­вое ребро SA в точке М. Объем пи­ра­ми­ды МАВС равен 6. Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 8, зна­ме­на­тель: ко­си­нус альфа конец дроби , где  альфа   — угол между плос­ко­стью ос­но­ва­ния и плос­ко­стью бо­ко­вой грани пи­ра­ми­ды SABC.


Аналоги к заданию № 1683: 1715 Все


Задание № 1902
i

В па­рал­ле­ло­грам­ме длина одной из сто­рон вдвое боль­ше длины дру­гой, а ост­рый угол равен 60°. Боль­шая сто­ро­на па­рал­ле­ло­грам­ма лежит в плос­ко­сти α, а его боль­шая диа­го­наль об­ра­зу­ет с этой плос­ко­стью угол, синус ко­то­ро­го равен  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 14 конец дроби . Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 15, зна­ме­на­тель: синус в квад­ра­те бета конец дроби , где β — угол между плос­ко­стью па­рал­ле­ло­грам­ма и плос­ко­стью α.


Аналоги к заданию № 1902: 1934 Все


Задание № 2112
i

Пря­мая a пе­ре­се­ка­ет плос­кость α в точке A и об­ра­зу­ет с этой плос­ко­стью угол 30°. Точка B лежит на пря­мой a, при­чем A B=6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та . Най­ди­те длину про­ек­ции от­рез­ка AB на плос­кость α.

1) 3 ко­рень из 2
2) 3 ко­рень из 3
3) 6 ко­рень из 6
4) 3 ко­рень из 6
5) 6 ко­рень из 3

Аналоги к заданию № 2112: 2142 Все


Задание № 2195
i

Ос­но­ва­ни­ем че­ты­рех­уголь­ной пи­ра­ми­ды яв­ля­ет­ся ромб, у ко­то­ро­го ко­си­нус угла равен  дробь: чис­ли­тель: 7, зна­ме­на­тель: 8 конец дроби и длина сто­ро­ны равна 8. Все бо­ко­вые грани пи­ра­ми­ды на­кло­не­ны к плос­ко­сти ее ос­но­ва­ния под углом α, а вы­со­та пи­ра­ми­ды равна 18. Най­ди­те зна­че­ние вы­ра­же­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та умно­жить на тан­генс альфа .


Аналоги к заданию № 2195: 2225 Все


Угол BSC пра­виль­ной тре­уголь­ной пи­ра­ми­ды SABC равен  2 арк­тан­генс дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби . Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 21 умно­жить на ко­си­нус в квад­ра­те бета , зна­ме­на­тель: ко­си­нус в квад­ра­те \varphi конец дроби , где  бета   — угол между бо­ко­вым реб­ром SB и плос­ко­стью ос­но­ва­ния ABC,  \varphi  — ли­ней­ный угол дву­гран­но­го угла SBCA.


Аналоги к заданию № 2314: 2346 Все

Всего: 6    1–6